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RS Data Mining

e Increasing spectral, spatial, and temporal
resolutions

e Challenges
— Insufficient no of ground truth training samples
— Aggregate Classes
— Overlapping Classes

e New Approaches
— Semi-supervised Learning
— Sub-class classification
— Mixture models for multi-source data
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Semi-supervised Learning
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Spatial Semi-supervised Learning
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Spatial Autocorrelation is very important, ignoring may
result in salt and pepper noise
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Sub-classes and Overlapping Classes

e Training is domain specific (Same image but different
classes in different applications)

— Forester: Hardwood, Conifer, ..., Rest of image (few broad
classes (Agriculture, Urban, Water)

— Agriculture: Soybean, Wheat, ... Rest (forest, Urban, ...)
e Violates basic assumption of unimodal Gaussian/class

e Mismatch between thematic classes and image
classes

— Upland hardwood vs. Low-land hardwood
— High-density Urban vs. Low-density Urban
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Sub-class Classification fr'om
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Semi-supervised Sub-class Classification
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Multi-source Classification

e Mixture Model
M
p(x10)=> a,p,(x18) [p,()—Gaussian]
i=l1

e Mixture Model for Multi-source Data

M 2
p(x10)=> a ] py(x,16,)
= 7=l .

1 =1:Continuous
1 =2 :Discrete
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Conclusions and Future Directions

e Semi-supervised

— Improved accuracy for as few as 2 labeled samples per
class, Spatial classification is better

— Challenge — Significance Testing + Matching
— Future needs — "pixels” to “"objects”
e Sub-class Classification
— Can be used to recognize large number of finer classes
— Challenge — collecting (few) labels for sub-classes
e Mixture Model for Multi-source Data
— Very flexible framework
— Challenge — variable selection, stratification, ...
e We are working on

— Image characterization (extending natural scene
statistics)

— Object-based classification, semantic labeling, image retrieval, ...
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